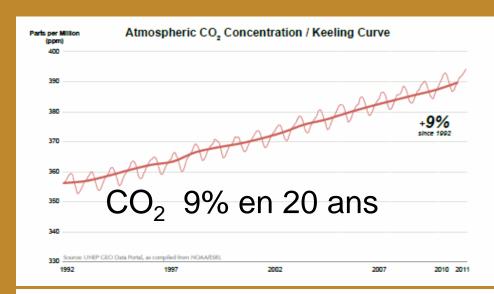
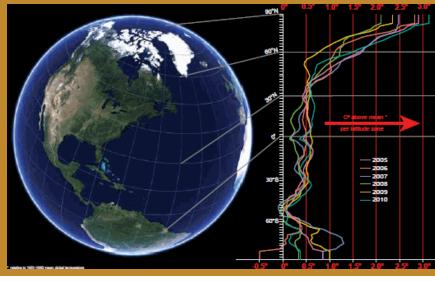
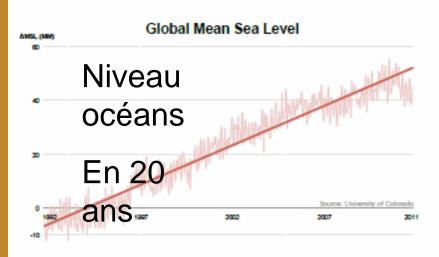


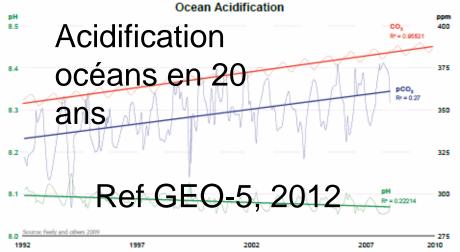
David Paré
Service canadien des forêts, Ressources naturelles Canada
Joey Villeneuve

Centre de recherche de Québec, Agriculture et Agroalimentaire Canada

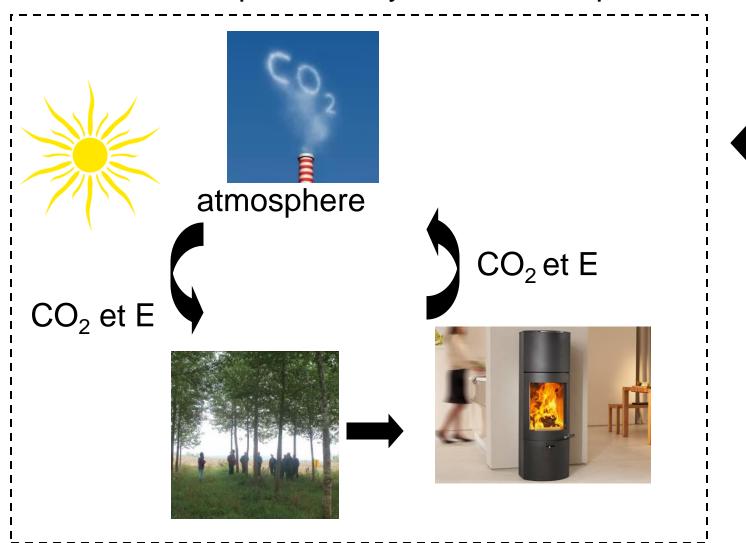



Plan de présentation conjointe


- Les changements climatiques
- Carboneutralité et la dette de carbone
- L'avenir de la biomasse au Québec
- Les Normes en vigueur
- L'efficacité énergétique et les émissions
- Conclusion



Les changements climatiques: un fait!



Carboneutralité

La biomasse fait partie du système atmosphère-biosphère

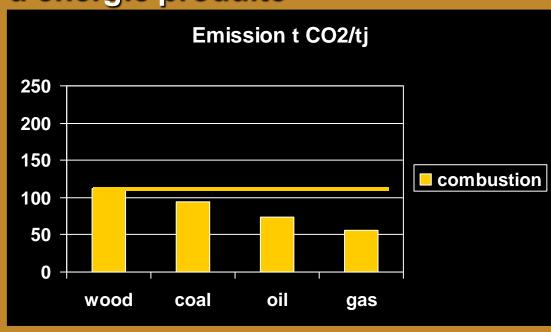
Carburants fossiles

La bioénergie ne peut être consiérée automatiquement complètement carbo neutre (GIEC/ IPCC 2012 FAQ):

- 1. Énergie utilisée dans la production, le conditionnnement, le transport: très faible -5% energie produite
- 2. Conversion forêts
- 3. Émissions temporaires

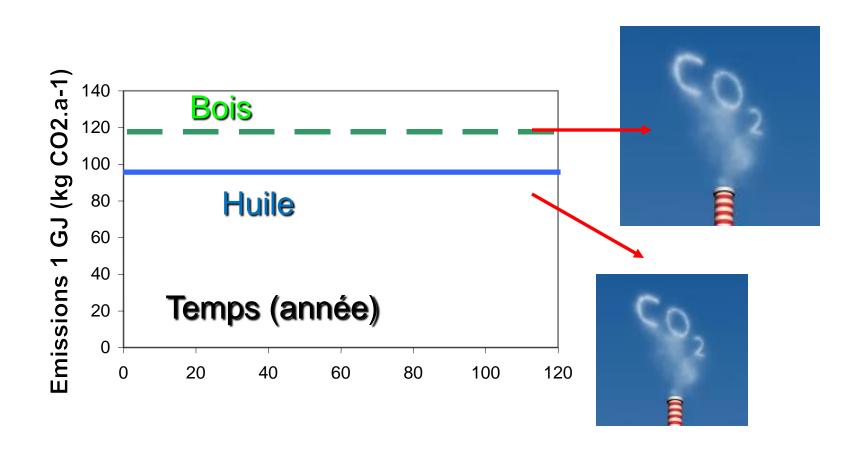
Carboneutralité

Valeur d'émission par défaut GIEC (tCO2/tj)

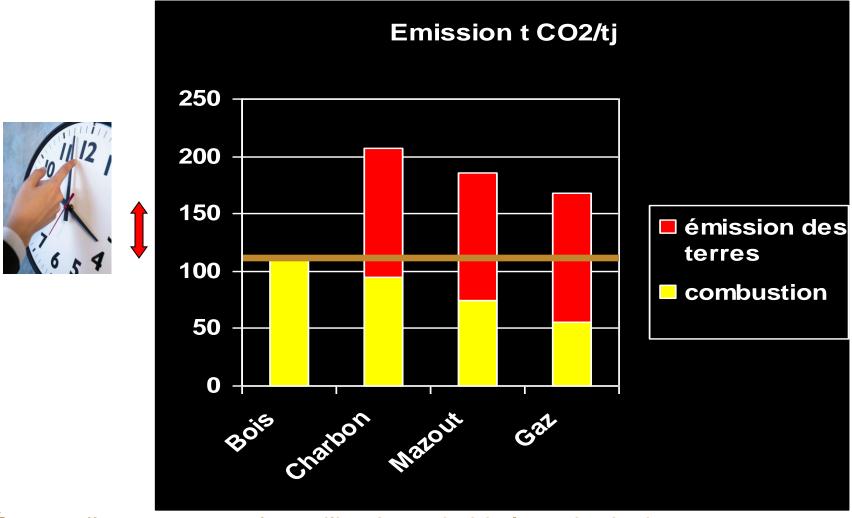

Charbon 94.6

Mazout 74.1

Gaz 56.1

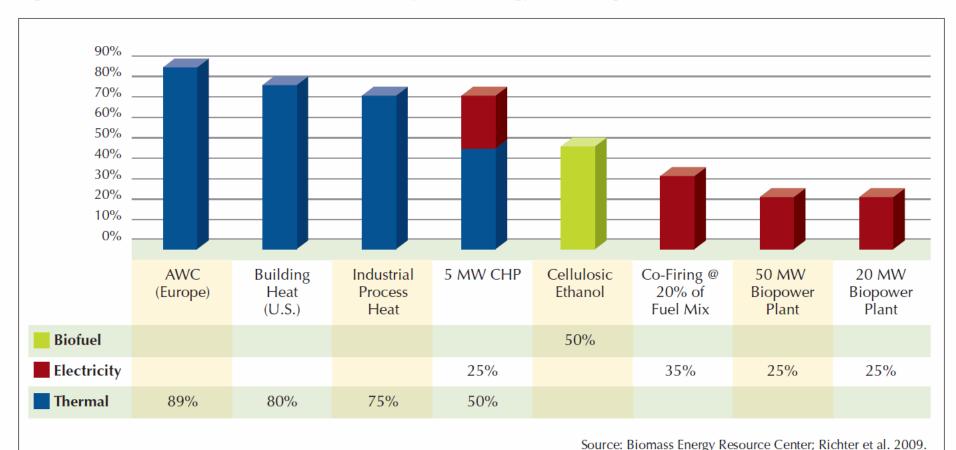

Bois 112

Émission CO2 par quantité d'énergie produite



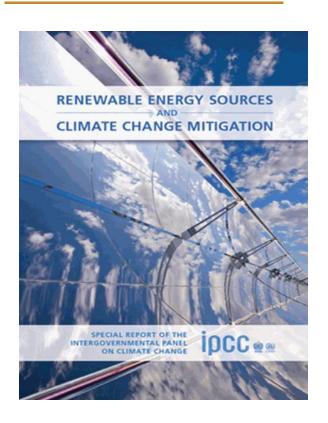
Le bois est un combustible à faible densité énergétique

Émissions (CO₂) par quantité d'énergie produite


... lorsque la biomasse n'est pas utilisée en énergie, le C qu'elle contient retourne éventuellement à l'atmosphère sans possibilité de substituer des carburants fossiles.

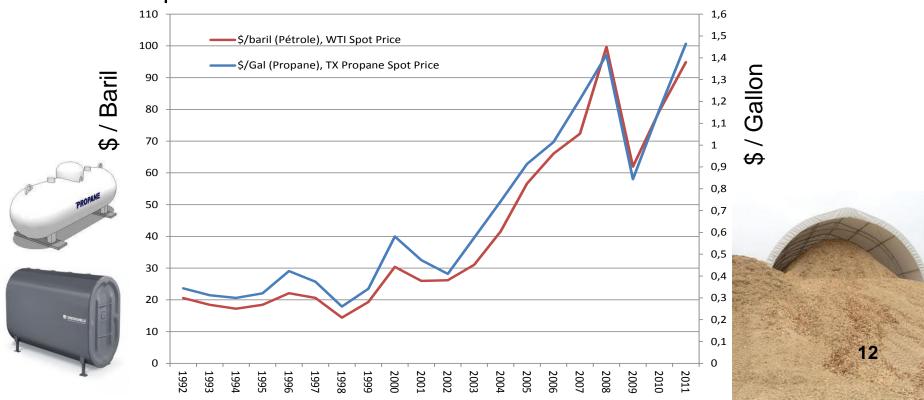
Éventuellement toutes les utilisations de bioénergie deviennent meilleures pour l'atmosphère que celles utilisant des carburants fossiles.

Efficacité de conversion de différentes technologies de la bioénergie


Figure 7. Relative biomass conversion efficiency of bioenergy technologies.

Est-ce que la bioénergie permet de réduire les GES? (oui! mais avec différents délais)

Étude	Dette (an)	Source	Usage	Substitut
McKechnie et al. 2011	16	résidus	électricité	charbon
McKechnie et al. 2011	38	arbres	électricité	charbon
Manomet 2010	5	résidus	CHP	mazout
Manomet 2010	90	arbres	électricité	mazout
Bernier & Paré 2011	7	résidus	chaleur	mazout
Bernier & Paré 2011	90	arbres	chaleur	mazout
Repo et al. 2010	4	résidus	chaleur	gaz
	22	souche	chaleur	gaz
Gibbs 2008	1000	Huile de palme- tourbière	biodiesel	mazout


L'utilisation de la biomasse comme source de chauffage en agriculture constitue <u>l'une des</u> avenues les plus prometteuses pour la réduction de la production de gaz à effet de serre!

- -Production locale (peu de transport)
- -Utilisation en chaleur (hautement efficace)
- -Utilisation de biomasse issue de la courte rotation, d'afforestation, de résidues de coupe ou d'usine ou de bois d'éclaircie= court temps pour la carboneutralité

Avenir de la filière au Québec

- Stabiliser les coûts de chauffage
 - Substituer les combustibles couteux (huile, propane)
 - Huile entre 1\$ et 1,15\$/L, propane entre 0,45\$ et 0,64\$/L
 - Équivalent biomasse entre 290-325\$/TMA et 185-265\$/TMA

Avenir de la filière au Québec

- Combustion de la biomasse
 - L'équipement et les systèmes
 - Investissement (40k\$-60k\$ pour 150kW),
 - Possibilité de subventions
 - Bien calculer l'amortissement et inclure entretien et mise à jour
 - La qualité de la biomasse et le procédé de transformation
 - · Identifier des sources à long terme
 - Broyage, séchage, transport (≤30kM)
 - La confiance de l'utilisateur

Obtenir des garanties de qualité (MJ/kg, humidité, granulométrie)

Normes en vigueur au Québec

- Règlement sur l'assainissement de l'atmosphère (c. Q-2, r. 4.1)
- Norme spécifique pour la combustion du bois seulement
- Exception Biomasse agricole granulée => 70 mg/m³
 - SI ≥3MW, bois avec résidu de colle (100mg/m³(E) et 70mg/m³(N))

Concentration des matières particulaires pouvant être émises par une fournaise ou une chaudière (combustion du bois)

Puissance	Émissions en mg/m³ de gaz sec corrigé à 12 % CO ₂		
(fournaise /chaudière)	Existante	Nouvelle	
≥150kW < 3 MW	600	150	
≥ 3 MW ≤ 10 MW	340	70	
≥ 10 MW	100	70	

Normes en vigueur au Québec (suite)

- Équipement de moins de 150 kW => Législation au niveau de la fabrication, émissions ≤ 137mg/m³
 - Le combustible dois être du bois sous toute forme
 - Le fardeau de la preuve repose sur le manufacturier
- Certifications des émissions obligatoires si ≥ 150 kW
 - Envoyer résultats avant le 30 juin 2011 pour tous
 - Fardeau de la preuve (particules et opacité) = l'utilisateur
 - Certification aux 5 ans si ≤ 3 MW
 - Certification aux 3 ans si entre 3 MW et 10 MW
 - Certification annuelle si ≥ 10 MW

Normes en vigueur en Colombie-Britannique

 Le district de Vancouver impose des normes de combustion de la biomasse très contraignantes

< 3 MW: 4 à 18 fois plus sévères qu'au Québec

≥ 3 MW: 1,4 à 6,8 fois plus sévères qu'au Québec

Limites d'émissions pour bouilloires à biomasse

	Concentration		
Duigognos utilo do—	mg/m³ de gaz	opacité de l'air %	
Puissance utile de la fournaise ou de la chaudière	Fournaise ou chaudière (existante ou nouvelle)	Fournaise ou chaudière (existante ou nouvelle)	
	Septembre 2010	Septembre 2010	
≤ 3 MW	35	10	
≥ 3 MW	50	10	

Impact social de la législation local

- 90 serres en périphérie du district régional de Vancouver (DRV)
 - Législation provinciale vs la législation du DRV
 - 35 à 50 mg/m³ versus aucune limite spécifique, seulement des recommandations de qualité de l'air
 - Citoyens réclament des émissions égales au gaz naturel (5 mg/m³)
 - Articles de journaux (7) du district régional de la vallée du Fraser

Normes en vigueur en Allemagne

 Les normes d'émission pour la combustion de la biomasse les plus contraignantes en 2014

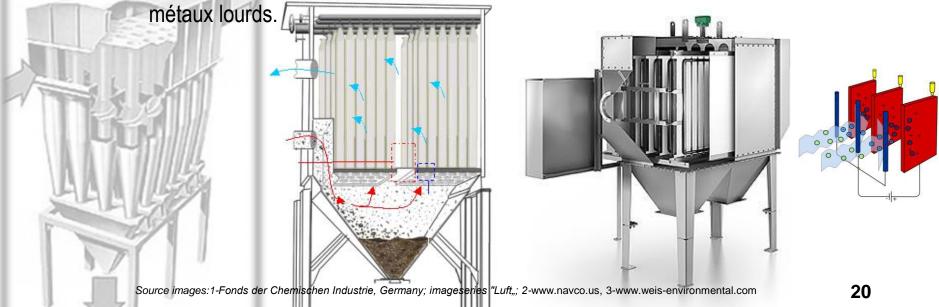
< 3 MW: 7,5 à 30 fois plus sévères qu'au Québec

≥ 3 MW: 3,5 à 17 fois plus sévères qu'au Québec

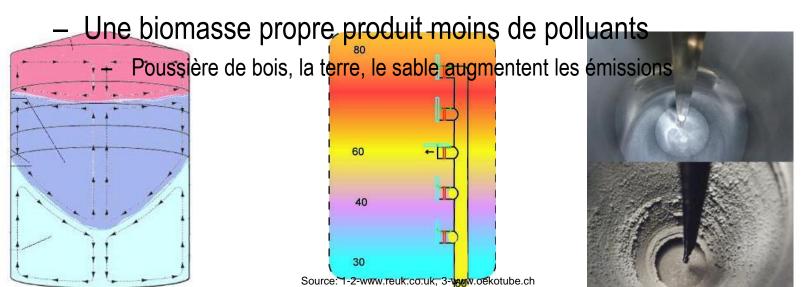
Limites d'émissions pour bouilloires à biomasse

Puissance utile de la fournaise ou de la chaudière	Concentration mg/m³ de gaz		
	Fournaise ou chaudière (existante ou nouvelle)		
	En vigueur	2014	
< 2,5 MW	100	20	
< 5 MW	50	20	
> 5 MW	20	20	

Facteurs influençant les émissions de particules


- Combustible (HR, granulométrie, cendres, qualité, minéraux)
 - Si ≥60% humidité pas assez d'énergie pour évaporer l'eau
 - Granulométrie variable influence la combustion et l'alimentation
 - Les cendres abaissent la température de combustion (isolants)
 - Le contenu en minéraux influence la corrosion et les dioxines et furanes (cancérigène)
- L'alimentation, chambre de combustion, échangeur
 - Variation en fonction de la combustion (EFV)
 - Contrôle de la température du feu (réfractaire, isolants)
 - Échangeur efficace, long temps de séjour

Facteurs influençant les émissions de particules


- Les systèmes de contrôle de la pollution
 - Multi-cyclones, filtres à manches, précipitateurs électrostatiques, additifs chimiques pour modifier la réaction de combustion.
 - L'effet des PM à partir de la combustion de biomasse :

 La combustion de bois à grande échelle constitue un risque à la santé humaine dû à d'importantes émissions toxiques de particules fines, de monoxyde de carbone et de

Impact de l'efficacité énergétique sur la consommation

- Combustion constante augmente l'efficacité
 - Un hydroaccumulateur permet de brûler en régime permanent;
 - La bouilloire doit être très bien isolée, tiède au contact de la main;
 - L'échangeur de la bouilloire doit demeurer propre (3 mm d'encrassement peut réduire 8% l'échange) (U.S. Department of Energy (DOE))
 - Système de nettoyage automatique (Mesure continue de perte de charge)
 - Équilibre air-combustible permet une combustion complète.

Impact de l'efficacité énergétique sur la consommation

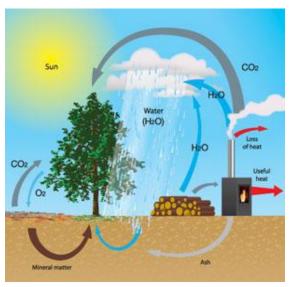
- Évaluation énergétique des installations
 - Réduire la consommation d'énergie globale avant de convertir
 - Isoler les tuyaux de distribution réduire la consommation de 30%
 - Si Ttuyau à 80°C, 312W/m de perte (10°C ext.) et 446W/m (-20°C ext.)
- Biomasse = Coûts de manutention et entreposage élevés

Source:www.crossroadsci.com

Source:www.arranwoodfuels.co.uk

Conclusion

- La confiance du consommateur est primordiale
 - Qualité, quantité, disponibilité, contenu énergétique (MJ/kg)
- Des équipements efficaces à faibles émissions
 - Acceptabilité sociale, qualité de l'air
- La législation sur les émissions sévères à venir
 - Les normes de Vancouver et d'Allemagne sont un avant goût de ce que le Québec peut adopter comme règlement


Contact

Joey Villeneuve, Agriculture et Agroalimentaire Canada, Québec, QC, Canada G1V 2J3, villeneuvejoey@gmail.com, Tél. : (418) 656-2442

Evelyne Thiffault, Centre de foresterie des Laurentides 1055, rue Du P.E.P.S., C.P. 10380 Québec, Québec, G1V 4C7, Tél. : (418) 648-5835, Evelyne.Thiffault@RNCan-NRCan.gc.ca

Question?

Source: www.dalkia.com

Il faut utiliser la bonne technologie avec la bonne biomasse pour obtenir une combustion propre et efficace